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ABSTRACT

A analysis of numerical methods for extracting
: aerodynamic coefficients from dynamic test data has been
? conducted. The emphasis of the analysis is on the effects
! that random measurement errors in tae data and random
i disturbances in the system have on the accuracy with which
the ccefficients for linear and nonlinear systems can be
determined. Both deterministic and stochastic methods for
extracting the coefficients and determining their uncer-
tainties are considered.

The deterministic technique considered, due to
Chapman and Kirk, provides excellent estimates of both
linear and nonlinear static pitching moment coefficients
for the range of measurement errors and system noise
considered. Somewhat less accurate estimates of linear
damping coefficients are obtained. Nonlinear pitch damp-
ing coefficients extracted using this deterministic technique
are affected considerably by both measurement errors and
system noise. The estimated standard deviations of the
‘ extracted coefficients obtained using standard techniques
are generally adequate when the data being analyzed con-
: tain only measurement errors.

The stochastic approach considered demonstrates the
feasibility of using an extended Kalman filter, with a
) parameter augmented state vector, for determining the
values of the aerodynamic coefficients and their uncer-
! tainties from noisy dynamic test data.

k . The specific filter used generally reaches near

i steady-state conditions in its estimates of the parameters

* in less than one second. Variations in the initial para-
meter variances or in the estimates of the noise statistics
‘ essentially affect only the determination of the nonlinear

i damping parameter.

Parameter estimates obtained from the extended filter
compare favorably with previously obtained results using
- deterministic techniques. Estimates of the parameter
uncertainties provided by the filtér are generally superior
to those obtained with deterministic techniques particularly
when system noise has corrupted the data.

Distribution limited to U. S. Government agencies only:
this report documents test and evaluation; distribution
limitation applied February 1973. Other requests for
this document must be refeirred to the Air itorce Armament
Laboratory (DLGC), Eglin Air Force Base, Florida 32542.
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SECTION I

INTRODUCTION

1. Subject Matter

This report presents an analysis of methods for
determining aerodynamic coefficients of flight vehicles
for dynamic test data. This determination is accompiished
by finding numerical values of the aerodynamic coefficients
appearing in the equations of motion such that the solu-
tions to these equations are adequate representations of
the given test data. When this determination has been
made, the coefficients are said to have been extracted
from the dynamic data.

The emphasis of the analysis is placed on the effect
that randcm measurement error~ in the data and random
disturbances in the system have on the accuracy with which
the coefficients for linear and nonline 'r systems can be
determined. Both deterministic and stochastic system
models for extracting the coefficients and determining
their uncertainties are considered.

2. Historical Background

The determination of aerodynamic coefficients from
dynanic data is generally agreed to have begun with the
work of Fowler, Gallop, Luck, and Richmondl in the first
quarter of this century. Their basic technique was con-
cerned with determining moment and damping characteristics
of artillery shells by firing these projectiles through
spaced cards and reconstructing tne pitch and yaw angle
time histories by observing the obliqueness of the holes
that resulted when the shells passed through the cards.
Their tcchnique of data measurement is still in use at
some ballistic ranges to this date.?

Nielsen and Synge3 later clarified the linear theory
of Fowler et al in their work Juring, and immediately
following, World War II.

Coefficient extraction techniques that are currently
in use at many ballistic and wind tunnel facilities evolived
from the work of Murphy4:5 and Nicolaides,® both of whom
have considered various combinations of degrees of freedom
for a variety of flight vehicles. Their aerodynamic co~
efficient extraction techniques feature a least squares
fit to dynamic data of the exact solutions of linear
equations of motion, or approximate closed form solutions
of slightly nonlinear equations of moticn using the quasi-
linearization technique of Xryloff and Bogoliuboff.7 Ex-

1
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tensions of the work of Murphy and Nicolaides, particularly
for more complex nonlinear systems, have been made by
Eikenberry and Ingram.?

The requirement for closed form solutions of the
equations of motion has recently been eliminated by the
formulation of least squares techniques which £it numerical
solutions of the equations of motion to dynamic data. The
minimization of the least sgquares criterion function involves
differential corrections, as do the techniques of Murphy
and Nicolaides; the required partial derivatives are
determined by numerically integrating parametric diffcr-
ential equations which are derived £f£rom the equations of
motion. Contributions to this numerical coefficient
extraction techni%ue have been made independently by
Chapman and Kirk,l0 Knadler,ll Goodmanl2,13 and
veissinger,l4 although the method is usuall, referred to
as the Chapman-Kirk technique. The computational require-
ments of this technique are sometimes extensive,l5 but
this is usually outweighed by the fact that it can be
used to analyze highly nonlinear aerodynamic forces and
noments . 16

All of the coefficient extraction techniques that
have been discussed to this point are deterministic in
nature in that the modeling of the equations of motion
does not account for random disturbances in the system.
Most angular or translational motion data obtained from
ballistic ranges or wind tunnel dynamic tests have, never-
theless, been affected by random system noise and random
measurement errors. Tihr cffects of noise of these types
on the accuracy of cuefficients extracted from dynamic data
using deterministic technigues are of current interest.l7
With the exception of ingram's9 partial analysis of noise
effects on Eikenberry's "Wobble" program,8 however, little
has been repoxrted concerning these effects. One of the
primary goals of the research reported here is to show some
effects of random measurement errors and system noise on
the accuracy of aerodynamic coefficients extracted from
dynamic data using the most general of the various determi-
nistic techniques, *hat of Chapman and Kirk.

In recent years increasing attention has been given
to parameter and state variable estimation through the
use of stochastic modeling of the physical system of
interest. Most of this work has been done by optimal
control specialists and is a direct result of pioneering
contributions in linear filtering theory by Kalmanl8,19
and Bucy.l9 fThe Kalman filter provides estimates of the
states of noisy, linear dynamic systems as well as estimates
of the state variable uncertainties. Bryson and Ho,20
among others, have extended the Kalman filter theoxry to
include estimates of the states for nonlipear systens:




Mehra2l has recently proposed a maximum likelihood
technigque for the determination of aerodynamic coefficients
from dynamic data using thke Xalman filter for linear systems
and the extended Kalman filter when the system is non-
linear. Results verifying his proposals are, as yet,
unavailable.

An additional maximum likelihood technique has b.en
developed by Grove et al22 and has been used with modest
success by Suit.23

A stochastic approach to the coefficient exc.raction
problem using an extended Kalman filter with param. “er
augmented state vector is developed in this report.
Results obtained with this filter are also presented.

3. Scope of the Report

The remainder of this report is devoted to an analysis
of the effects of random system noise and measurement
errors on coefficients extracted from dynamic data using
the m2thod of Chapman and Kirk, as well as the development
and evaluation of an extended Kalman filter for solving
essentially the same problem. The equation of motion
used in the analysis is one describing cthe one-degree-
of-freedom pitching motion of a rigid body. Pitching
moments that are both linear and nonlinear functions of
angle-cf-attack are considered.

The theory of the Chapman-Kirk technique is recounted
briefly in Section II, followed by the analysis of noise
effects on this method in Section III.

Developments leading to the formulation of the extended
Kalman filter to be used are given in Section IV. Results
obtained with the extended filter are presented and discussed
in Section V.

A summary is given in Section VI,

Computer program listings and definitions of program
variables are given in the two appendices.
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SECTION II

THE COEFFICIENT EXTRACTICON TECHNIQUE
OF CHAPMAN AND KIRK

1. Development of the Extraction Algorithm

A brief reconstruction of the Chapman-Kirk algorithm
for extracting aerodynamic coefficients from dynamic data
is given in this section. The standard technique for
estimating uncertainties in coefficients determined from
a least squares fit of a given function to experimental
data is also presented.

The extraction technique of Chapman and Kirk has two
very basic requirements: (1) the differential equation
of motion for the body of interest must be given and
(2) a set of experimental data based on the observed motion
of the bcdy must be available.

As an example, consider the nonlinear equation of
pitching motion for a rigid body

8 + (Cy + Cga?)a + (C3 + Cga2)a = 0 C (1)

subject to the initial conditions

a(0) Cy

& (0) = Cy
where o indicates the derivative of o with respect to time.
N Suppose, also, that the time history of the pitch angle

as recorded during some experiment, ae(ti), i=1l,2,...m,

is also available.

L The technigque of Chapman and Kirk is used to determine
f the values of the C4 (j=1,2,...,6) in Equation (1) which
result in the solution to this equation of motion being

a best fit to the test data in a least squares sense.

Thus, it is necessary to minimize the least squares cri-
terion function

i=1 -

m 2

where ac(ti) is obtained from the solution to Equation (1).

4
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Now it is well known that in order to determine para-
meters directly by a least squares fit of a given function
to test data, the parameters must appear linearly in the
funstion. This requirement is met in the problem at hand
by expanding oc in a truncated Taylor series about the
numerical soiution resulting from some initial estimates

of the parameters of interest, Cjo i.e.,
[4

9a
(ﬁ—) ch ’ (3)
1 i/

n \
h i are evaluated for C.=C. and AC.=C.~-C. .
where (. an , ) 5%%50 55C¢57C50

Substituting (3) into (2) yields

(

m 6 T. 2 4
s=3 {ale) -a, (£) -1 |22 acyy - (4
i=1 e’ 1 co’ 1 =1 La 3 ;

oC.

Now, assuming that the [aa ] are known, Equation (4) is a
J

function of the ACj's only. Therefore, to determine the
values of these coefficients that will minimize this equation,
it is necessary to take the partial derivative of Equation

(4) with respect to each AC,, set each of the resulting
equations to zero and solve-for the ACj's. Carrying out
these operations yields the following matrix equation

(Al [ac] = [B] {5)

where 2 is, in this case, a 6 X 6 matrix with elements

given by
do ]
EYoll ' (6)
[ack i

e e T et e A n e
g e g e e T e e »
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AC is a 6 X 1 column matrix, or vectcr, and B is a 6 X 1
column matrix with elements given by

m
By = ] [ae(ti) - aco(ti)] [
J7 4

i=1

Q

@
0

The solution to Equation (5) is
acl = [a]-! [B] . (8)

The solutions for the AC4's obtained from Equation (8)
are exactly correct only if oo is a linear function of the
Cj's as assumed by Equation (3). This condition of linearity
is seldom the case, and the process must be repeated with
new initial guesses,

cjl = cjo + cho (9)

until the change in the criterion function [Equation (2)]
from one iteration to the next is sufficiently small.

The algorithm just presented requires that time
histories of the influence coefficients, 3a , be available.

aC,
J

These time histories are determined by numerically inte-
grating parametric differential equations which are derived
by differentiating the equation of motion with respect to
each of the parameters of interest. As an example, the
parametric differential equation for C;, the initial
condition of o is

3%?[& + (Cy+Cga2) & + (Ca+Csa?)al = 0

ay_ . 3Cy 5 . 3Cq 24 © 90 2 0 3Cs
50, + 5C; o + 5C, a“a + 2Cguo 30, + Cga 50 + 50, a

a3 + 3Csa2 2% =9

do
+ —
Cs aC, * 3C;

[+ 3 L]
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Assuming that the parameters are independent of each other
and that the order of differentiation can be reversed,
thz final form of the desired equation is

2 T. .
97122 1y cga? S| 2% |4 (Ca43C5a2+2C5ad) [22—]= 0 (10)
at? Bcl dt Bcl §C1

subject to the initial conditions

3a (0) - 3¢y . 1

0C, aC;y
20(0)  _3C, _ . (11)
aCy 9C;

The complete set of parametric differential equations for
the given equation of motion [Equation (1)] is given in
Section III.

P In summary, the process for extracting numerical
; coefficients from test data given the system model [Equa-
tion (1)] and criterion function [Equation (2)] is

1. Estimate the numerical values of the Cy's.

2. Integrate Equation (1) to obtain acofti).

3. Determine [%%7]6-
J< 1

4., Solve Equation (8) for the ch's.

5. Repeat the process with C4,=C;,=AC4o until the

L change in Bugation (2) is suﬁ%gciently small.
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2. Estimation of Extracted Parameter Uncertainties

The estimation of the uncertainties, or standard
¢viations, of parameters that have been determined by the
& . squares fitting of a given function to test data is
well-known result available in a variety of references
see, for example, References 24 or 25).

The least square parameter uncertainties are estimated
in this report by

o5 = VAT - /S (12)

where Ajj'1 is the jth diagonal element of the inverse
Crammian matrix [Equations (6) and (8)], S is the sun of

the squares of the residuals as given by Equation (2), m

is the total number of data points, and K is the total number
of parameters being determined by the fit.
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SECTION III

ANALYSIS OF THE CHAPMAN-KIRK
COEFFICIENT EXTRACTION TECHNIQUE

1. Coefficient Extraction Computer Program

This section provides a detailed description of a
one-degree-of-freedom coefficient extraction computer
program based on the previonsly described iterative process
of Chapman and Kirk. This program considers the pitching
motion of a symmetric missile about a fixed point. It
is used to determine values of static pitching moment
coefficient deriwvatives, pitch damping coefficients, and
a trim term so that the solution to the appropriate differ-
ential equation of motion is a best fit to test data in a
least squares sense.

The program was developed to be used as an economical
tool in the evaluvation of the sensitivity to noise and
convergency sensitivity of the Chapman-Kirk technique when
operating in its least complex mode.

a. Computational Equations

(1) Equation of Motion

The complete equation of motion that is used in the
program is

8 + (Cu+Cgal)a + (Ca+Csa24+Cra%)a + Cg = 0

with initial conditions

(1(0) = C]_ ! &(0) = Cz
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Cs = T Ce 2VI
)
_ (Cma4)qu _ (Cmsa)qu
Cr=-"773 — Co =~ "1 —

(2) Parametric Differential Equations

The eight parametric differential equations for the
‘ gyiven equation of motion [Equation (13)] and initial con-
! ditions [Equation (14)] are of the form

Pj 3 Aéj + BPj = Fj , 5= Li2,...,8 (15)
\
f where
R _ da > - 4 3da s 42 3a
| Py=sc; ¢+ PyTaser By = Frie

(9}
.
(W}

and

B = (C3 + 3Csa? + 2Cgaa + 5Csa*).

o —

The walues of the initial conditions P§(0) and éj(O) as
well as the functional forms of the nonhomogeneous term
F4 are given in Table I for j=1,2,...,8.

10




TABLE I. INITIAL CONDITIONS AND NONHOMOGENEOQUS
TERMS FOR PARAMLETRIC DIFFERENTIAL EQUATIONS

j ‘ ‘ P4 (0) i>j (0) F

1 1 0 0

2 0 1 0 ‘
3 0 0 -a

4 0 0 -a

5 0 0 g3

6 0 0 -aa?

7 0 0 -’

8 0 0 -1

b. Program Description

The program is written in Fortran IV for use primarily
on an IBM 360/65. The paragraphs that follow describe the
functions of the main program and its four subroutines,
the required imput data, and the program options. A listing
of the complete program is given in Appendix I.

(1) Main Program Functions

The functions of the main program in their approximate
order of occurrence are as follows:

(a) Reads and writes input data.

(b) Computes initial parameter values, [These are the
Cj's that appear in Equation (13).]

(¢) Calls the numerical integration subroutine ADDUM.

(d) Writes current parameter values.

11
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(e)

(£)
(9)

(h)

(1)

(3)

(k)

(1)

(m)
(n)

(o)

(p)

(2)

The names and functions of each of the four subroutines

Computes the matrix elements required for incre-
menting the parameter values.

Calls the matrix inversion subroutine MINV,

Computes the sum of the squares of the residuals
between the calculated and experimental data
points.

Computes the root-mean-square residual and root-
mean-square error (Reference 24) of the current
fit to date.

Computes the estimated standard deviations
(Reference 24) of the current parameter values.

Tests the difference between the current and
previous values of the root-mean-square erroxr
to determine if the iteration process has
converged,

Computes the incremental changes for the para-
meters (if convergence has nr.t occurred).

Computes the updated parameter values (if
convergence has not occurred).

Returns to (c) (if convergence has nof occurred).

Computes the values of the extracted coefficients
from the current parameter values (after con-
vergence is achieved).

Computes the estimated standard deviations of
the extracted aerodynamic coefficients (after
convergence is achieved).

Writes extracted aerodynamic -coefficients,
estimated standard deviations, and the pitch
angle output that represents the final fif. to
the experimental data (after convergence is
achieved) .

Subroutine Functions

that are used in the coefficient extraction program are
given helow. '

ADDUM.-~ Subroutine ADDUM integrates the equation
of motion and parametric differential equations using a
fourth order Runge-Kutta method for starting and a fourth
order Adams-Bashforth predictor-corrector method for

running.

It calls subroutines XDOT and QUT. This sub-

routine is described in detail in Reference 26.
12
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XDOT.-- Subroutine XDOT computes current values of
first deraivatives that are required by ADDUM.

OUT.-- Subroutine OUT stores the results of the
numerically integrated equation of motion [Equation (13)]
and parametric differential equations [Equation (15)].

MINV.-- Subroutine MINV inverts a K x XK matrix using
a standard Gauss-Jordan technique and is described in
detaii in Reference 27.

(3) Required Input Data

The program reads six categories of input data.
These categories and the specific data in each are de-~
lineated in 2ppendix I. The format and units of the
entries on a specific data card can be determined from
the program listing ¢ d nomenclature list provided in
this appendix.

(4) Program Options

This program has options for extracting various
combinations of aerodynamic coefficients from the given
test data, in addition to the option of extracting no
coefficients and merely integrating the equation of motion.
These options are controlled by the numerical value of the
number of first order equations to be integrated, N, which
is read by the program on the first data card. The various
options are given in Table II.

13
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TABLE II. PROGRAM OPTIONS

N Coefficients to be Extracted

2 No coefficients are extracted. The program
integrates the equation of motion for the
given input data and prints the results.

[

8 o o C
o, 0, mao

10 %, %o, Cmao, Cmqo

121 95, %, Sneo, “mgo, “ma2

141 ey 95, Cneo, Cmgo, “ma2, Cmq2

16 | a5 9%, Cngo, Cmgo, “me2, Cmg2, Cmod

Q.

18 d C C

o, 0O, cmao, Cmqo, Cma2, mq2, C

mod, méa

2.  Bnalysis of the Sensitivity to
Nolse of the Chapman-Kirk Technique

The evaluation of the sensitivity to noise of the
Chapman~Kirk coefficient extraction technique has been
approached from several directions. Coefficients have
been extracted from numerous sets of computer program
generated data containing only measurement errors as well
as data containing system noise and measurement errors.

In addition to the use of artificially generated data,
some very preliminary work has been done with noisy wind
tunnel data obtained from actual experimentation. The
design of the experiment used to produce the dynamic
data is described by Turner in Reference 28 along with some
preliminary results obtained wita the one-degree-of-freedom
program described earlier in this section of the report.

Since the wind tunnel experimentation is still in a
developmental stage, however, the results presented in the

14
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remainder of this section are those obtained from arti-
ficially generated data.

a. Generation of Noisy Dynamic Data

The computer program UFNOISE described in detail in
Reference 29 was used to generate the dynamic data from
which the aerodynamic coefficients were extracted. This
program simulates the pitching motion of symmetric missile
oscillating in a wind stream about a fixed point, for any
given initial pitch angle displacement and initial pitch
angle rate, py numerically integrating the equation of .
motion. The program has two options for simulating system
noise; it considers the magnitude and direction of the
freestream velocity vector as normally distributed random
variables, with programmer set mean values and standard
deviations, to determine the system noise perturbation
accelerations or it simply selects random perturbation
accelerations which have zero mean, are normally distributed,
and have a programmer set standard deviation. Both methods
are essentially equivalent. New values of the system
noise perturbations are randomly selected at each numerical
integration step. The program also has the option of
simulating random measurement errors of the pitch angle
by superimposing normally distributed random noise con the
output of the numerical integration.

The basic equation of motion used to generate the

noisy dynamic data was a slightly simplified form of
Equation (13):

&+ (Cy + Cga2)a + (C3 + Csa2)a = w(t) (16)
subject to
a(0) = ¢, , ¢ (0) = C, . (17)

The true values of the physical and aerodynamic con-
stants used in generating the data are given in Table III.
The various noise level standard deviations and mean values

are discussed in the following paragraphs to which they
are pertinent.

15
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TABLE III., TRUE VALUES OF CONSTANTS
P USED IN GENERATING DATA
} Constant Value
d(Ft) 0.333
A(Ft2) 0.0873
I(slug fc?) 0.1080
Vm(ft/sec) 500.0
g (lb/£t2) 297.0
; -1 -
Cmao(rad ) 2.00
=3 -
Cmaz(rad ) 24.5
Cmqo -60.0
C rad-2 -163.0
qu( )
ao(rad) 0.5235
] ao(rad/sec) 0.0
|
b. Effects of Random Measurement Errors
Aerodynamic coefficients were extracted from a total
of nine sets of data containing only measurement errors. ~
Each data set was made up of 201 discrete points which re-
sult from integrating the equation of motion [Equation (16)]
in increments of 0.005 second for a total of 1.000 second.
The desired mean value of the measurement erroxrs for

each of the nine data sets was 0.0 radian. The desired
standard deviations of the random errors were 0.00146
radian, 0.00582 radian, and 0.01745 radian, with three
different sets of data being generated at each noise level.
These standard deviations are typical of measurement un-
certainty for data of this type (Reference 9).

16
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The above standard deviations corwvespond to percent
noise levels of 1.1, 4.4, and 13.2, respectively, where
percent noise level is defined in Reference 30 as

Percent Noise = 3g (18)
Approximate average peak amplitude

with ¢ being the standard deviation of interest. The
approximate average peak amplitude can be determined in a
variety of ways. The value used here is the mean positive
peak amplitude for the three cycles that result when the
nominal equation of motion is integrated for 1.000 second.

The results of this portion of the analysis are given
in Table IV and in Figures 1 through 10.

Table IV is primarily a summary of the percent error
in the extracted aerodynamic coefficients together with
their normalized estimated standard deviations for the
various actual measurement exrors, op. The percent error
in the extracted coefficients is defined by

Percent Error (Cj) = (Cjncj) - 100 (19)
‘ c,
)
where €: is the coefficient estimate determined with the
program™ in the fitting of the data and C4 is the true
value of the coefficient of interest. The normalized
estimated standard deviations are the estimated steandard
deviations calculated from Equation (12) divided by the
true value of the parameter of interest,
O3
Percent %n =TT 100 (20)

3

Table IV also contains the RMS residual for each fit to the

noisy data and the percent noise levels based on the values

of O

17
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An example of one of the program fits to a noisy data
set is shown on Figure 1. rlgures 2 through 5 show the
variation of the perxcent error in the individual extracted
coefficients with measurement error. The variation of RMS
) residual with measurement error is shown on Figure 6. The
variations of the normalized estimated standard deviations
of the extracted coefficients with measurement error are
shown in Figures 7 through 10.

An analysis of Table IV and Figures 2 through 10
reveals the following:

a. The extracted static pitching moment coefficient
derivatives show little or no error for the
entire range of measurement errors considered.
(See Figures 2 and 3.)

b. The extracted pitch damping coefficients show
some error for the lower noise values (opg0.005
radian) and deviate significantly for op®0.018
radian. (See Figures 4 and 5.).

c¢. The variation of RMS residual with measurement
noise is essentially linear with a slope of unity
(Figure 6). This indicates that the RMS residual,
as calculated by the coefficient extraction pro-
p gram, is a good estimate of the amount of measure-
ment noise in the data when this is the only
type of noise present.

d. All variations of the normalized estimated standard
deviations of the extracted coefficients, Iyns
increase linearly with measurement error (Filgures
7 through 10). Approximate values of the slopes
of these variations are given in Table V. These
normalized uncertainty ratios give the relative (to
each other) uncertainty which can be expected when
extracting coefficients from data containing
measurement noise using the glven coefficient
extraction program.

e. The true value of a given coefficient is contained
within the interval defined by its extracted
value 304 for every coefficient extracted from
the nine sets of data.

19
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TABLE V. EXTRACTED COEFFICIENT UNCERTAINTY RATIOS

Approximate Normalized

Coefficient Uncertainty Ratio
(Cj) (Aaj/Aom)
Cy 2
Cs 2
Cy 5
Ce 50

20
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c. [Effects of Random Measurement Errors and System Noise

For this portion of the analysis, attempts were made
to extract aerodynamic coefficients from twelve basic
sets of dynamic data. Each data set was made up of 201
discrete points resulting from integrating the equation
of motion in increments of 0.005 second for 4.00 seconds;
the pitch angle was output every four integrntion steps
so that tbhe time between data points was 0.020 second.
The time between data poinis used in this portion of the
analysis is different from that previously used. This
change was made so that the time between data poir ts would
correspond to that used by Turner28 in actual experiment-
ation.

Of the twelve kasic data sets, nine contain system
noise and measurement errors, whereas three contain only
measurer~nt errors. Coefficients were extracted from these
latter three to determine if the above-mentioned change in
the time increment between data points had any appreciable
effect on the extracted coefficients or their uncertainties.
The estimates of the uncertainties were improved due pri-
marily to the fact that a longer data record was being
analyzed.

The desired mean values of the freestream velocity
vector direction fluctuations and measurement ex ‘ors for
all data sets were zero. The desired standard de 'iation
of the measurement errcors, op, was 0.00582 radian
(30 = 1.0 degree) fov all sets; the desired standard
deviation of the velocity magnitude fluctuations, oy,
was 5.0 ft/sec for all nine data sets containing system
noise. The desired standard deviations of the velocity
. direction, o5, were 0.02910 radian (303 = 5 degrees),

: 0.05820 radian (305 = 10 degrees), and 0.11640 radian
(3064 = 20 degrees), with three different sets of data
being generated at each noise level.

The random velocity fluctuations act as a forcing
functior, for the equation of motion and cause oscillations
} even if the vehicle has no initial displacement., The
. resultant maximum amplitudes of these forced oscillations
| are usually within a certain magnitude or noise band width.
! The widths of the noise bands for the data used in this
analysis are generally equivalent to the 30, values, and
| these have been used to calculate the percent system noise
values. The approximate average peak amplitude used in the
percent noise calculations is the mean positive peak amp11~
tude for the 10 cycles that result when the nominal equation
of motion is integrated for approximately four seconds.

21
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The results of this portion of the analysis are given
r in Table VI and in Figures 11 through 19.

Table VI is a summary of the percent error in the
extracted aerodynamic coefficients and their rormalized
f estimated standard deviations along with the varioas noise
level standard deviations, percent system noise levels,
and the RMS residual of each fit to a noisy data set.  The )
percent system noise levels are similar to those encountered
experimentally by Turner in Reference 2§.
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Figure 11 is an example of one of the program fits
to a noisy data set. Figures 12 through 15 show the varia-
tion of percent error for the extracted coefficients with
system noise. The variations of the normalized estimated
standard deviations of the extracted coefficients with
system noise level are shown on Figures 16 through 19.

An analysis of Table VI and Figures 12 through 19
reveals the following:

a. The errors in the linear static pitching moment
coefficient derivative parameter, C;, are gen-
erally less than 5 percent for the entire range
of system noise considerxred. The errors in the
corresponding nonlinear term, Cs, are generally
less than 10 percent. (See Figures 12 and 13.)

b. The pitch damping parameters show significant
error for all nonzero system noise levels. The
extracted values of the nonlinear term, Cg, are
sometimes in error by several orders of magnitude
at the higher noise levels. (See Figures 14
and 15.)

c. The estimated standard deviations of the extracted
coefficients generally increase as the system ncise
increases. The estimated standard deviations
of coefficients extracted from dynamic data
containing both system noise and measurement
errors are generally too small and do not reflect
the true uncertainty of the extracted coeffi-
cients as was true in the previous case when
the data contained only measurement errors.

(See Mable VI and Figures 16 thrnugh 19.)

d. All attempts at extracting the complete set of
coefficients from data with a system noise band
of approximately 20 degrees failed (see Table VI).
The failures resulted when a value of Cg was
eventually calculated by the iterative process
which caused the solution to the equation of
motion to diverge.

e. The divergence problem can sometimes be circum-
vented by not attempting to extract Cpy, From
extremely noisy data. The resulting coefficients
that are extracted, Cmaor Cpaz, and Cngo s have
accuracies comparable to those extracted from
noisy data with a *10 degrees system noise band.
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SECTION IV

DEVELOPMENT OF THE EXTENDED KALMAN FILTER FOR
ESTIMATING PARMMETERS AND THEIR UNCERTAINTIES

1. Introduction

This chapter presents an abridged derivation of the
Kalman filter for discrete and continuous linear systems,
followed by a general statement of the extended Kalman
filter for continuous nonlinear systems. The extended
filter is then used as a base for the development of a
specific algorithm for estimating states and parameters
of the second order equation of pitching motion for a
missile being forced by random disturbances.

2. Development of the Kalman Filter

The original derivation of the Kalman filter was presented by
Kalman'® in 1960 -for multistage systems making discrete linear transi-
tions from one stage to another. Kalman and Bucy!® gave the analogous
development for continuous linear systems approximately one year after
the first work was published. The purpose of the linear filter is to
provide estimates of the state of a system by making use of measure-
ments of all, or some, of the state vector components of the system.
The system is assumed to be operating in the presence of random distur-
i bances, the statisticai properties (i.e., mean and variance) of which
are known. The measurements of the state vector components of the
system are also assumed to have random errors of known statistics.

In addition to the original derivations of Kalman and Bucy,
several other methods offering various degrees of insight but leading
L to the same results are available. A brief development taken primarily
from Bryson and Ho®° is presented here, Other derivations or develop-
ments of the filter equations are given by Jazwinsky,®! Sorenson,®?
) and Barham,3?

The treatment given here starts with a static system and is
exterded for a single-stage linear transition which leads directly to
linear miltistage process. Finally, by making use of a limiting
process, the desired form of the equations for a contimuous linear
dynamic system is given.

a. Static System

The problem at hand is to estimate the n-component state vector
X of a ctatic system using the p-component measurement vector, z, con-
taining random errors, v, which are independent of the state. The
measurement vector can be represented as
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= HX + v . (21)
where H is a known p X n matrix. Conditions on the measure-
ment errors are

E(v) =0 (22)
T
E(vv ) = R ’ (23)
where R is a known matrix of dimension p. It is assumed
that a prior estimate of the state, designated as X, is
available and also that the covariance of the prior esti-
mate, M, is known. Thus
M=E[X-B) (x-%)7T] , (24)
where M is of dimension n.
The desired estimate of X, taking into account the
measurement, z, is the weighted-least-squares estimate,
%, which minimizes
= 5\ T =1 e T -1 ,
J = [(X-X)" M=l (X-X) + (2-HX)" R (z-HX)]. (25)

Differentiating Equation (25) with respect to X, setting

the resulting equation to zero, and solving for X yields

£ =% + PHR™! (z-HX) ’ (26)
where
p=l = ¥l + HIR-1H . (27)
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The quantity P is the covariance matrix of the error in
the state estimate after measurement, X, i.e.,

P = E[(X-R) (x-%) 7] . (28)

b. Single-Stage Transitions

It is now desired to estimate the state of a system
that makes a discrete transition from state 0 to state 1
according to the lineaxr relation

X = ¢OXO + T W, ’ (29)

where ¢0 is a known transition matrix of dimension n and
o i3 a known n x r matrix. The mean and variance of the
random forcing vector are assumed to be known and are
given by

E(w) =W, , Bl %)W w)"1=0 . (30)

The statistical properties of the random state vector are
assumed to be known initially as

— A_ ,A_ T.—
E(X) = Xo r ELX X)X -X)7] =P, . (31)

1t is also assumed that X, and wy are independent, From
this inrvrmation X, is a random V¥ector whose mean value
and covariance are

i)
-©-
e
+
fate |

Xl oo oo (32)

M _ T 7
1 = 0P80 T T80T, . (33)

Suppose now that measurements of the state are made after
the transition to state 1; then from Equations (26) and
(27) the best estimate of X; is

21 = il -+ PIH?R—J (Z-Hlil) ’ (34)
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where

} P, = (Mp! + H?R'*H,)“l

= M; - MHT (HMHY + RT1) HiMy . (35)

c. Linear Multistage Processes

The developments of the two preceding subsections ¢an
be extended for linear, stochastic, multistage processes.
Given the following diffexence equation system model

Xipg = $5%; F Tywy ' (36)
where
P E(XD) = So (37)
|
” E(wi) =W (38)
! E[(X -% ) (X ~-% )] = (39)
(o] o] (o] (o] (o]

f E[(wi-wi)(wj—wj)] = Qisij (40)
] B[ v;~w,) (x_-% )71 = 0 (41)

and measurements of the state

z; = HyX; + vy . (42)
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where ]
u E(v.) = 0 (43)
I L
L 'l‘
E(vi13) = Rjd;s (44)
[
E[(w.=w.)ve] = 0 E[(X -% )vi] = 0 (45)
R T S ! 1 %0 i '
the estimate of the state is
8
j
{ X. = X. + K.(z.-H.X.) ' (45)
1 1 1 1 1 i
P vhere
]
‘ Rigr T 9385 + Tywy (47)
§ . I »
| K, = P,HR; (48)
= (M."1 TR =lg. )~
P:i. (Mi + HJ'.Ri HJ.)
—_ -~ T T (1 T -1 0.} i
= Mi MiHi (dihiHi + Ri )HiMi (49}
B i) 7
Mipy = 93P505 + 030,05 ) (50)
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Eyuations (46), (47) and (48) are the discrete Kalman
filter with the state variable covariances given by
Equations (*9) and (50). As can be seen from the above
eyuations, the Kalman filter is essentially the same as
ihe system model [Equation (36}]. The differences are

(1) the actual system noise, which is random from one stage

to the next in Zguation (36), is replaced by its mean ox
expected value, and (2) there is a correction term based
on the difZferencc between the actual measurement of the
state and its nrmﬂ'lr*m‘! value., The difference term ig
multiplied by a galn, K;j, which is essentially the ratio
of the uncertainty in the state to the uncertainty in
the measurement., If the covariances of the measurement
errors are large, the gain will be relatively small and
the corresponding difference term will have little effect
on the estimate of the state; if, however, the system
noise is relatively large or the measurement erroxs are

very small, the gain will be large and differences between

the actual and predicted measurements of the state at a
given stage have increased significance in the state
variable estimates.

d. The Contimous Kalman Filter

BY applyxng 4 limiting process to the digcrete filter

with the time between stages tending to zero, the linear
system model becomes

= P{e)X + G(t)w(t) '
and the continuous Kalman filter is given by

FX + Gw + PHYR} (z-HEX)

P
)]

FP 4 PF' + GQG' ~ PH K" lHP :

)
IH

3. The Extpnded Kalman Filter

The extension of thp Kalman filter for estlmatlng
the states of nonlinear systems in the presence of noise
has been given by Eryson and Ho20 and Jazwinski,3l among
others, as i
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- - = an)* . .
= £®0 +e@um + o3 Fllzm-ngnl (68
4 Y ik T 5] T 3h
E P = -B—}Z P + Pl'é—}z] + GQGT - P[‘a—g] R—l [3—X] P (55)
s for the nonlinear system
| K = £(X,t) + G(t)w(t) (56)
with measurements
z(t) = nlX,t) + v(t) ' (57)
where
Elw(t)] = w(t) (58)
Eflw(t)-w(t)1Iw(t')] = Q{£) s (t-t") (59)

E[X(t)] = }‘co

, = 2% 1T _
E[k(to)—xO][X(_o) XO] = Po

E[X(t) =X 1 w(t) =R ()" = 0

Efv{t)] =0

BE[v(£) vl (t')] = R(t)§(t~t')

42




v

ST T — X e T = LW T TR e T TR T

E[X(t)-X 1 [v(£)]" = 0
Elw(t)~w{t) I [v(£)]1T = 0

4. The Parametexr Estimation Algorithm

In this subsection a specific parameter and state
estimation algorithm using the extended Kalman filter is
developed for the basic equation of pitching motion pre-
viously analyzed with the Chapman-Kirk technique.

The nonlinear equation of motion, or system model,
is thus

a + (Cy+Cga2)a + (C3+Cga?)a = w(t)

where

E[lw(t)] = 0 ' Efw(t)w(t')] = g8 (t-t') .

The measurements of the state of the system are assumed
to be given by

z(t) = a(t) + v(t)

where

E(v(t)] = 0 . EIVE)VI(E')] = ré(t-t') .

Now ‘to reduce Equation (67) to the required system of
first order differential equations, let
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Qe
i

Xo . (71)

At this point, to estimate the aerodynamic parameters

- s o

state variables, the state vector is augmented by setting

Cy = X3
Cy = Xy
Cg = X5
Ceg = Xp (72)

with the constraints

A A A -
»

X3 = 0
).(1* = 0
Xg = 0
L *
N

Making use of Equations (71), (72), and (73), Equation (67)
now reduces to the following nonlinear system of flrst
order equations:
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with linear measurements

Bl e Bhiine A - |

= ~(Xy+XgX12)Xo~(X3+X5X 2)X; + w(t)

Z=XI+V

Comparing Equations (74) and (75) with Equations (56) and
(57), the following matrices may be identified:

c(e) = |

£ (xX,t) =

0
1

3

¢

H(t) = rxl

0

»

X3

- (Xy+XgX, 2)X2 - (X3+X5%, 2)X1

0
0
0
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Now, since the mean value of the system noise is assumed
to be zero [Equation (68)] and because the measurements
of the state are related linearly to the state [Equation
(75)1, the extended Kalman filter, previously given by
Eguations (54) and (55), can be simplified somewhat to

% = (X,t) + PH® (%] [2-HX) (77)
L=J
P = 3f P +P 3L * + G GT - PHT 1 HP (78)
Y X q r ’
where
H=[100000] .

Applying Equations (76) and (77) yields

¢ 3 (
X, X
Xy "(Xq'i‘XgXlz)Xz - (X3+X5X12)X1
¥ 0
' 0
Xs 0
LXSJ L 0 P,
1 Y 1 1 (]
P31 P12 P13 Piy Pys Pig| |1 S(z-[1 0000 0] | X
P12 P22 P23 Pay Pas Pas| 10 X,
P13 Pa3 P33 Pay P3s P3g| |O X3
Pyy Poy P3y Pyy Pys Pyl |0 Xy
+ ~
Pys Pys P3s Pus Pss Psg| |O Xs
P16 P26 Pag Pus Pse Pesf |0 Xg
.
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Carrying out the prescribed multiplications and eguating
like components of the resulting two column matrices
yields the desired filter equations,

S ~

£y = X, + L (z-%))

A

-~ ~ » A ~ ~ A P A
X, = ~(Xy+XgR1) Ky - (R+XsXP Ry + -2 (z-%y)

Xy = -é—l*- (Z-}El)

P -~
Xg = —-}:-i (z-X;)

|

Xg = —L& (z-X)) . (79)

The necessary covariance equations are obtained from the
matrix Ricatti equation [Equation (78)] making use of
Equations (76) and the fact that

[_a_f_] -
9X X=}E

-
L 0 1 0 0o 0 0
—221}2226-5{3—32%25 --(_}A(L}-}-'}A{G}A{%) _f{l _}T{z _}2% ..}2%},‘(2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
. (80)
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The results of substituting Equations (76) and (80) into
(78), carrying out the rather tedious matrix multipli-

cations,
Py

P12

and equating like terms are

1
= 2P),-7P11?
7 " 1
= P22~AP11-BP32-X1P)3-X2P14-CPy5-DP1s-TP11P12

1
= Pp3-7P11P13

1
= Poy—7P11P1y

1
= Pas=zP11P1s
1
= Pyg~3P11P16
~ ” 1
= -2 (AP +BP+X P, 3+X5P2y+CPy 5+DP ) =21 22
~ N l
= -AP)3-BP33-X1P33-XsP3,-CP35-DP3g~7P12P13
_ ~ ~ - o P lP P
= —AP) 4, ~BPy=X1P3y~XoPy4=CPy5-DPyg=ZP12P1 4
A ~ 1
= -AP;5-BP;5-X1P35~X2Py5~CP55-DP5e~zP12P15
~ ~ l
= -AP)s-BP,5~X1P36-X2Pus~CP56-DPge P 12P16
1, .2
= -ZP13
1
= -ZF13P1y

1
= —ZP. P
T 13¥15

1
= -FP13P16

48




x

iy

1
k Pys = ~2P14P15

1
Pue = ~FP14P1s6

1
P55 = -ZP157
% - hd -
L
Psg = ~ZF15P16
N |
Pgs = —TP16°

where

D = X2X, . (82)

i The desired estimates of the states and parameters

are obtained by numerically integrating the filter equations
[Equations (79)] and their covariances [Equations (81)].
Initial estimates of the states and their covariances as
yell as the variances of the system noise and measurement
errors are assumed to be available. In the event that the
data consist of discrete measurements, which is usually

the case, che constant time between data points should be
equal tu the numerical integration step size. This is
necessary because the state estimates are updated at each
integration increment and, in doing this, the filter requires
knowledge of the difference between measured and estimated
state values.

If the filter successfully adjusts the true states and
the imbedded parameters so that X; is an adequate match to
the data, z, the time derivatives of the filter equations
for the parameters become small [see Equations (79)] and
the parameters reach steady-state or near steady-state
conditions. -
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SECTION V

USE OF THE EXTENDED KALMAN FILTER FOR
ESTIMATING PARAMETERS AND THEIR UNCERTAINTIES

T 1, Introduction

This section presents an analysis using the extended
Kalman filter with parameter augmented state vVector to
determine aerodynamic coefficients and their uncertainties
from noisy dynamic data. A description of the digital
computer program used in the analysis is given first,
followed by results obtained with this program from a
variety of noisy data sets.

2. The Extended Kalman Filter Program

The extended Kalman filter program is written in
Fortran IV for use primarily on an IBM model 360/65
digital computer. The basic function of the program is
to integrate numerically the 27 first order differential
equations which are given in the previocus chapter and
which comprise the extended Kalman filter with parameter
augmented state vector. The specific fanctions of the
main program and its subroutines, as well as the required
input data, are described in the following paragraphs.

W A listing of the complete program is given in Appendix II.
f

a. Main Program Functions

The main program reads and writes the input data
and calls the numerical integration subroutine,
ACOUM.

i ' b. Subroutine Functions

\ The names and functions of each of the three sub-
routines that are used in the extended Kalman filter
program are given below.

(1) ADDUM

Subroutire ADDUM integrates the 27 filtexr and
covariance equatiouns using a fourth order Runge-
Kutta method for starting, followed by a fourth
order Adams-Bashforth predictor-corrector method

for running. It is essentially identical to the
subroutine of Lhe same name used in the Chapman-
Kirk coefficient extraction program and is described
in detail in Reference 26. Subroutines ¥DOT and OUT
are called from ADDUM.

50




————— T T J—‘-‘
L r——— e —— L ek e et W B -~ :}!’:.U‘.'____m
B i

(2) XpoT

Subroutine XDOT computes values of the time deri-
vatives for the differential equations being
) integrated by ADDUM.

3) our

This subroutine writes the output of the numerical
integration.

C. Pon'n

3 end
WM kL UL

The program reads four categories of input data.

| These categories and the specific data in each are
delineated in Appendix II. The format and units

of the entries on a specific data card «~an be
determined from the program listing and nomenclature
list, which are also given in Appendix II.

3. Analysis of the Extended Kalman Filter

The use of the extended Kalman filter for estimating
the parameters of interest is analyzed for linear and non-
linear systems with data containing only measurement errors
as well as data containing both system noise and measurement
errors. The analysis begins with a linear system and data
containing only measurement errors and progresses through
increasing stages of difficulty up to nonlinear systems and
data which have been corrupted by both system noise and
measurement errors. The previously discussed computer
program and algorithm require no modifications to consider
the linear case; by initially setting the parameters that
are the numerical coefficients of the nonlinear terms in
! the equation of motion (and their variances) equal to zero,

the extended filter for a nonlinear system reduces to the
one required for a linear system.

; All data used in the analysis were generated by the

; previously mentioned computer program, UFNOISE (Reference
29) . The true values of the constants used in the data

w generation are those previously given in Table III with the

! exception of the initial value of the pitch angle for the

; linear system. This initial displacement is a more realistic

r 0.1745 radian for the linear cases considered.

a. Linear Systems with Measurement Errors Only

After the extended Kalman filter computer program
had been constructed and checked, it became apparent
that the teclinique would probably be best under-
stood by considering relatively simple cases at first
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and then progressing to more difficult ones as
confidence in the technique was gained. To this

end, the first success with the program was rea-
lized when analyzing data containing only measurement
errors for  linear system.

The pitch angle data used in this part of the
analysis were generated by integrating the equation
of motion

& + Cya + Cza = 0 (83)

and superimposing random Gaussian errors on the
output. The standard deviation of the errors is
0.00588 radian, which corresponds to 3¢ measurement
errors of approximately 1.0 degree. The numerical
integration step size used in generating the data
was 0.005 second, and the pitch angle was output
every integration increment. The equation was in-
tegrated for a total of 2.00 secornds.

Basic Filter Performance

The results of using the extended Kalman filter to
identify the corxrect values of the parameters of
interest, X3 and X,, are shown on Figures 20 and

21. These figures show time histories of the perxr-
cent errors in the estimated values of the parameters
that were computed by the extended filter program
when analyzing the noisy data described previously.
The percent error is defined by

X.-X.) "100
(xJ zj) 10
J

. (84)

PERCENT ERROR (ij) =

The input for the measurement error variance was the
one previously computed by the simulation program
based on the errors that were actually put into the
data. The initial values of the parameter variances
were computed from knowledge of the true value of
the parameters and the arbitrarily selected initial
values of the rarameters. These sample variances
are defined by

. (0) = [X,(0)-%,(€)]? . 85:
P;400) = [X,(0) xj(c)] (85)
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This method of initializing the parameter variances
was chosen merely to generate the required initial
numerical values. In actual experimentation, the
initial variance values would depend on the method
of selecting the initial parameter estimates and
prior knowledge as to hov accurately these initial
parameter estimates were in relation to the true
values of the parameters.,

The initial values of all coveriances were chosen

as zerco. This implies that exrrors in the estimates

of the individual state vectcxr components are initially
uncorrelated. The Lanitial values of the variances

for the pitch angle and pitch angle rate were aliso

i chosen as zero. For wind tunnel dynamic experimen-
tation whore the model is initially held rigid at

some given displacement to the wind stream, this

seems to be a valid assumption.

As can be seen from Figures 20 and 21, the filter

does an excellent job of identifying the parameters

of interest. The Xy parametex, which corresponds

to the Cp, term and which is initially in exror by

25 percent, is identified with approximately zero
percent error in less than 0.3 second. The correct
identification of the damping parameter takes slightly
more time but %the results are of equal quality.

(2) Effects of Variations in the Initial Parameter Variances

This subsection presents some effects on the near

h steady-state estimates of the parameters of interest
3 and their near steady-state variances for various
values of the initial parameter variances. The

i parameter variances were initialized to values that
were 25 percent higher than those used in the pre-
vious sub section and also to values that were 25
percent lower than the referenced values. The effects
of these initializations are shawn in Figures 22
through 25 and in Table VII for the linear system

of interest.

Table VII is a summary of the percent errors in the
parameter variances and the normalized parameter
uncertainties for the above-mentioned variations in
the initial parameter variances.

The same results are depicted graphically in Figures
22 and 23, The numerical results in Table VII are
based on the near steady-state parameter and variance
values that result after the filter has integrated
for 1.5 seconds. These correspond to the last point
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TABLE VII. EFFECTS OF VARIATIONS IN THE INITIAL
PAPAMETER VARIANCES ON NEAR STEADY-
STATE PARAMETERS AND THEIR VARIANCES
(LINEAR SYSTEM, MEASUREMENT ERRORS ONLY)

Variation 1n Exrrors in Near Normalized Near
Initial Parameter Steady-State Steady-State
Variance* Parameters Variances
(Fercent) (Perc¢.at) (Percgnt)
X3 Xy /Pa3 /By,
n n
-25 0.17 0.55 0.12 0.91
0 c.19 0.46 0.11 .91
25 0.22 0.38 0.11 0.91

*relative to sample variance
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shown on the supporting figures. The normalized
parameter uncertainties are defined by

YP. .
PERCENT (»"‘“‘ij) = —-%1 . 100 . (86)
n 3

Time histories of the parameter variances, P33 and
Pyy, are shown in Figures 24 and 25. All of the
information preserted in these figures indicates
that initial values of parametexr variances in the
range investigated have no effect on final parameter
estimates or their variances when using the extended
Kalman £ilter to analyze data for a linear system
containing only measurement errors.

Linear Systems with Measurement Errors and System
Noise

Data for this portion of the analysis were generated
with the computer program UFNOISE by numerically
integrating the following equation of motion

8+ Cyé + Cza = w(t) (87)

and superimposing random Gaussian errors on the out-~
put. The forcing function, w(t), is also random

in nature and Gaussian with zero mean. The standard
deviation of the system noise was 4.80 rad/sec?,
which is of sufficient magnitude to drive the
oscillations in a noise band of approximately 0.0872
radian (5 degrees) for zero initial displacement.
The standard deviation of the measurement errors

was 0.00556 radian. Also, as before, the equation
of motion was integrated in increments of 0.005
second for a total of 2.00 seconds.

Basic Filter Performance

The basic p¢«+formance of the filter is demonstrated
in Figures ... and 27 which show time histories of
the percent error in X3 and X,. As can be seen from
these figures, the initial estimates of X3 and Xy
are 25 percent in errox and these estimates are
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corrected to within approximately 1 percent and
3 percent of their respeciive true values. The
noise variances used are those given by the
simulation which generated the pitch angle data.
The initial parameter variances are calculated
from Equation (85).

Effects of Variations in the Initial Parameter
Variances

The sensitivity of the filter to variations in
the initial parameter variances is given in
Table VIII and in Figures 28 through 32. Table
VIII is a summary of the percent error in the
parameters of interest and their normalized un-
certainties for variations in the initial para-
meter variances of -25 percent, 0.0 percent and
25 percent relative to the sample variances.

Figures 2§ and 29 show the variation of the near
steady-state errors in the parameters and their
normalized uncertainties as functions of the per-
cent variations in the initial parameter variances.
Figure 30 shows the two time histories of the

error in the estimate of X, that result for two
different initial values of the parameter variances.
One of the initial variances is the sample variance
based on the initial and true values of the para-
meter [Equation (85)], and the other is 25 percent
less than this value.

The X3 error time histories are essentially iden-
tical for both cases and are not presented. The
variations of the parameter variances with time,
for the three initial values considered, are shown
in Figures 31 and 32.

From the information given in the figures mentioned
above, it is obvious that neither X3 nor P33 are
affected by variations in the initial variances
within the #25 percent range considered. The es-
timates of the damping parameter as well as its
variance are affected, however, by these variations.
The near steady-state damping parame cer estimates
vary almost linearly with initial variance values
from a low of 0.47 percent to « high of 4.95 per-
cent (see Figure 28). The variation in the normalized
uncertainty is less pronounced, ranging f£rom a low
of 14.39 percent to a high of 15.81 percent (see
Figure 39). Nevertheless, the near steady-state
uncertainties are of sufficient magnitude so that
the true wvalues of the coefficients are within less
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TABLE VIII. EFFECTS OF VARIATIONS IN THE INITIAL
PARAMETER VARIANCES ON NEAR STEADY-
STATE PARAMETERS AND THEIR VARIANCES
(LINEAR SYSTEM, MEASUREMENT ERRORS
) AND SYSTEM NOISE)

} Variation in | Errors in Near Normalized Near
i Initial Parameter Steady-State Steady-State
Variance* Parameters Variances
(Percent) (Percent) (Percent) .
! 3 8 /Py Py
n n
-25 0.72 -0,47 2.42 14.39
0 0.88 2.66 2.42 15.18
25 0.98 4.95 2.42 15.81
P *relative to sample variance
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! than one standard deviation of their estimated

’ value regardless of the initial parameter variance,
} when the standard deviation is taken as the square
root of the near steady-state parameter variance.

! Attention is also called to the fact that since
system noise is now present in the data, the near

1 steady-state parameter variances are of greater
magnitude than was the case when only measurement
exrrors were present (see Figares 24, 25, 31, and
32).

(3) Filter Response to Large Erxrors in the Initial
Parameter Estimates

The results of using the extended Kalman filter to
identify the damping parameter Xy, when the initial
estimate of the parameter is in error by 100 percent
are shown in Figure 33 for two initial parameter
variance estimates. When the initial parameter
variance is pased on the initial estimate of X,, the
near steady-state parameter estimate is approximately
14 percent high; for an initial parameter variance
that is greater by approximately 25 percent, the
resulting near steady-state value of X, is nearly

19 percent high. The corresponding parameter variances
1.5 seconds after the filter begins integrating are
such that the estimated values of X, are within
approximately one standard deviation of the true value.

o (e

(4) Comparison of Filter Performance to Chapman-Kirk
Technique

The parameters of interest and their uncertainties ;
were extracted from the given noisy data set using

the previously described technique of Chapman and

Kirk in order to be compared to the filter results.

The percent error in the parameters and their normalized
estimated standard deviations obtained with the

A Chapman~Kirk program are

et

X3:12.5 percent (1.8 percent)

Xy: 3.1 percent (0.3 percent)

The above results are similar to those presented in
Table VI in that the estimated parameter uncertain-
ties are not of sufficient magnitude to reflect the
true error in the extracted parameters. Whereas the
extended filter estimates the parameters and variances
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so that the true value of the parameter is
generally within one standard deviation of the
estimate, it is shown that such is not the case
when using the Chapman-Kirk technique. The errors
in the above parameters are also slightly greater
than those obtained with the extended filter,
although this is probably of less consequence than
the differences in the uncertainties computed by
the two techniques.

S

sl

Lioate o 2

C. Nonlinear System with Measurement Errors Only

The pattern used in the previous two sections of
generating a data set, investigating the basic
response of the filter in identifying the para-
meters of interest, and checking the sensitivity
of the filter to variations in the initial para-
meter variances is essentially repeated here for
the more complicated system model

o + (Cy+Cea2)d + (Ca+Csa2)a = 0 . (88)

In addifion, some effects of errors in the measure-
ment erxror variance are also included and discussed.
{ Some comparisons of results achieved with the ex-

tended filter and the Chapman-Kirk technique are
also made.

The standard deviation of the measurement errors in
the generated data is 0.00569 radian. The mean
value of the errors is zero.

: (1) Basic Filter Performance:

The time histories of the four parameters of interest
as computed by the extended filter while analyzing
the data just described are shown in Figures 34, 35,

| 36 and 37. The initial errors in the parameters are
-25 percent for X3, Xy, and Xg and -5 percent for

i X5. The measurement error variance is that obtained
from the simulation. The initial values of the para-
meter variances are based on the difference between
the true values of the parameters and the above-
mentioned initial estimates.

The reason the initial estimate of X5 is only 5 per-
cent low instead of 25 percent, as is the case with
the other parameters, is due to its magnitude and a
weakness in the numerical scheme. The true value

of X5 is 1960 kased on the data in Table III. A 25
percent initial error in this parameter results in
an initial parameter sample variance of
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Pss(0) = (1960-(0.25)1960)2 = 240,000

which is of sufficient magnitude to cause the filter
to diverge for the numerical integration step size
of 0.005 second. The divergence occurs because the
large initial value of Pgg results in large values
of P,s and Pys which, in turn, cause the values of
Pss that are fed into the numerical integration sub-
routine to be very large [Equations (81) and (82)].
The result of this cascading effect is a rapid de-
crease in Pgs in large increments until it becomes
negative (a physical impossibility since this term
is the variance of a parameter). The structure of
the covariance equations is such that a negative
variance causes numerical divergence in the solutions
to several of the equations.

To circumvent the problem, an initial error of

-10 percent in X5, with a corresponding adjustment
in Pg5(0), was tried. The result was again diver-
gence. Finally, an initial estimate of -5 percent
was found to be successful.

The results shown in Figures 34, 35, ard 36 indicate
that the filter does an excellent job in correctly
identifying the linear and nonlinear static restoring
moment parameters, X3 and X5, as well as the linear
pitch damping term, ¥X,. The results for the non-
linear damping parameter, Xg, are not as gratifying

as can be seen by referring to Figure 37. The error

in this term is still approximately -10 percent

after 1.5 seconds. The reason for this problem is
related to the magnitude of this parameter as com-
pared to others in the equation of motion. The true
value of X3 and X5 are 160 and 1960, respectively,
although the magnitude of Xg is effectlvely reduced

by at least an order of magnitude when it is multiplied
by a3. X, and Xg, on the other hand, have true values
of l 60 and 4.35, respectively. After Xg is multlplled
by 024, it is effectively the smallest parameter in

the equation of motion by an order of magnltude and

it is naturally more difficult to identify since it

has the least effect on the trajectory.

Effects of Variations in the Initial Parameter
Varilances

The effects of variations in the initial parameter

variances are summarized in Table IX and in Figures
38 and 39. As can be seen from these results, the
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near steady-state values of the parameters and

their variances are relatively insensitive over

the range of initial parameter variances considered.
Cnly the Xg parameter estimate and its variance

show a variation of more than 1 percent. As is
obvious from the referenced table and figures, no
data are available for initial parameter variances
of 50 percent above the sample variances; the reason
for this is, again, that the magnitude of the Psjs
variance caused the filter to diverge.

Attention is called to the fact that, for the range
of initial variances considered, the near steady-
state estimates of the X3, Xy, and X5 parameters
are all within one standard deviation of their true
values when the standard deviation is taken as the
square root of the near steady-state variance for
the parameter of interest. The Xg parameter is
always within two standard deviations of its true
value.

Effects of Errors in the Estimate of the Measurement
Exrxor Variance

Up to this point, exact values of the measurement
error variance, r, have been used in all runs made
with the extended filter. Exact knowledge of this
quantity is available because the pitch-angle data
being used with the extended filter are computer-
generated with specified noise statistics. 1In
actual test situations, true values of the noise
parameters may not be known exactly and, in fact,
methods for determining both measurement error
variances and system noise variances from noisg
dynamic data are of current research interest. 4

Some effects of errors in the estimates of the
measurement error variance on the near steady-
state parameter estimates and their uncertainties
are given in Table X and in Figures 40 and 41.
These results show that errors in the measurement
noise variance of #25 percent have essentially no
effect on estimates of the four parameters of in-
terest. The uncertainties of the X3, Xy, and Xj
parameters are changed by less than 1 percent over
the range considered. The normalized Xz uncertainty
varies from approximately 5 percent to 12 percent.
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I'ilter Response to Largex Error in the Initial
ILstimate of Xj

The difficulty associated with numerically large
initial parameter variance estimates has been
discussed earlier. The sample variance of Pgg
which corresponds to a -5 percent error in the
initial X5 parameter estimate appears to be an
approximate upper limit for the integration step
size and physical constants used in this analysis.
A run was made, however, with the previously
described nonlinear data set containing only
measurement errors where all initial parameter
estimates were in error by -25 percent; the Pgg
variance, however, was set equal to the previously
used sample variance which corresponds to a -5
percent initial estimate of X5. The parameter
estimate time histories resulting from this
initialization are shown in Figures 42 through 45.
These results indicate that the near steady-state
values of the parameters are very nearly equal to
those presented when the sample variances based on
the initial parameter estimates were uged initially.

Comparison of Filter Performance to Chapman-
Kirk Technique

The linear and nonlinear static restoring moment
and damping parameters were extracted from the
noisy data set being considered in this section
using the Chapman-Kirk program. The percent errors
in the parameters and their normalized estimated
uncertainties are given below.

X3:0.36 percent (0.35 percent)
Xy:0.69 percent (0.43 percent)
X5:0.41 percent (0.49 percent)

X5:4.60 percent (11.27 percent)

Comparing the above results with those previously
given in Table IX reveals that the estimates
obtained using the extended filter are slightly
more accurate for all but the X, parameter. Since
the errors are, for the most part, less than 1 pex-
cent, the differences are essentially insignificant.
The normalized uncertainties obtained with both
techniques are equally good.
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d. Norlinear System with Measurement Errors and
System Noise

In this section, as before, the basic filter per-
formance, sensitivity of the filter to initial
parameter variance variations and sensitivity of
the filter to errors in the estimates of the noise
variances are investigated. The data used in the
analysis were generated by numerically integrating
the following noanlinear equation with a random
forcing function,

a + (Cy+Cga2)d + (C3+Csa2)a = w(t) . (89)

Approximately the same standard deviations used previously
are repeated once again; the standard deviation of the
measurement errors is 0,00576 radian and the standard
deviation of the system noise is 4.75 rad/sec?.

(1) Basic Filter Performance

The time histories of the exrors in the parameters
of interest obtained with the extended filter are
given in Figures 46 through 49. The response time
required for the parameters to reach their near
steady—-state values is slightly greater than in the
simpler cases that have been considered previously.
The accuracy of the parameters is similar to that
} which was achieved for the nonlinear system with
cnly measurement errors in the data with the ex-
i ception of X,, which is approximately 5 percent
higher.

(2) Effects of Variations in the Initial Parameter
Variances

The effects of variations in the initial paramater

' variances are given in Table XI and are shown in
Figures 50 and 51. Only the nonlinear damwping para-

meter and its uncextainty vary by more than 1 per-

cent for initial variance variations of up to 50

' percent relative to the sample variances.

(3) Effects of Errors in the Estimates of the Noise
Variances

The effects of errors in the estimates of r, the
measurement error variance, and ¢, the system noise
wva~iance, are given in Table XII and are shown in
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Figures 52 and 53. These figures show the
variation of the near steady-state parameter
errors and normalized parameter uncertainties

as functions of the error in the estimate ol the
measurement error variance for various values of
error in the system noise variance estimate. From
these results it is obvious that only Xg is
affected by errors of #25 percent in the estimate
of the system noise variance or measurement error
variance.

Comparison of Filter Performance to Chapman-Xirk
Technique

The percent errors in the parameters and their
normalized estimated standard deviations that are
obtained using the Chapman-Kirk program with the
data currently being analyzed are given below:

X3:0.62 percent (0,40 percent)
Xy:2.63 percent (L1.23 percent)
X5:0.41 percent (0.61 percent)

Xg:46.3 percent (14.8 percent)

Comparing these results with the results in Table

XI irdicates that both technigues yield essentially
the same accuracy in their determination of X3 and

X5. The filter does considerably better in estimating
Xg but is sl.ghtly worse in its estimate of Xy.

The uncertainties computed using the filter are of
sufficient magnitude so that the true value of the
X3, X5, and Xg parameters are within one standard

deviation of the filter estimates; the true value

of X, is within two standard deviations.

Wnen using the Chapman-Kirk technique, only Xg is
within one est+imated standard deviation of its

true value; X3 and X, are within two estimated

standard deviations of their respective true values.
The extracted value of Xg is not within three estimated
standard deviations of its true value.
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Variance (Linear System Measurement Errors Only)
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SECTION VI

SUMMARY |

1. General Comments !

An analysis of methods for extracting aerodynamic |
[ coefficients from dynamic test data has been conducted. !
The primary concern of this analysis has kzen to determine i
the accuracy with which these coefficients can be determined j
from dynamic data containing system noise and measurement ‘
errors. Both linear and nonlinear systems have been con-
sidered with emphasis on the latter. i

Two methods of extracting the coefficients of interest
and estimating their uncertainties have been analyzed. The i
first of these is a deterministic technique due to Chapman
and Kirk.l0 The second technique considered, based on the
extended Kalman filter20,31 with augmented state vector,
is stochastic in nature and has been developed and applied ‘
in this report. ‘

Both techniques considered will extract aerodynamic
coefficients from noisy dynamic data. The degree to which
b they are successful has been presented in detail in the |
preceding chapteys.

2. The Chapman-~Kirk Technique

The presence of noise in the dynamic data being used by
the Chapman-Kirk technique affects the accuracy with which
J this technique can be used to determine the coefficients
of interest. When measurement errors only are present in
] the data, these effects have been found to be negligible
on linear and nonlinear static pitching moment coefficient
derivatives; the effects on the linear and nonlinear pitch
damping coefficients are more pronounced, especially for
the higher measurement errors. The error in the linear
pitch damping coefficient is as high as 25 percent in one
] case. The greatest error in the extracted nonlinear pitch
damping coefficient is 227 percent. There is an obvious
inconsistency in the extracted values of this nonlinear
coefficient since another data set, which also contained
measurement errors with similar statistical properties,
yielded a value for this term which was in error by only
5 percent.

The estimation of the uncertainties of the extracted
coefficients when the data contained only measurement errors
is quite adequate. 1In every case considered, the true value
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of the coefficient of interest was found to be within three
estimated standard deviations of the extracted value. The
estimated standard deviations of a given coefficient are also

consistent for different data sets with the same measurement
arror statistics.

Use of data containing measurement errors and system
noise has a more adverse effect on the accuracy of coeffici-
ents determined with the Chapman-~Kirk technique. As is the
case when analyzing data containing only measurement errors,
the pitch damping coefficients are the ones most affected.
The errors in these coefficients range from 1 percent to
43 percent for the linear term and from 45 percent to £00

percent for the nonlinear term over the range of system noise
considered.

Perhaps of even greater consequence than the errors in
the damping parameters is the fact that their estimated
uncortainties are too small to indicate the true errors in
the coefficients when the data contain both system noise and
measurement errors. This is a direct consequence of using
the root-mean-square-error between the final solutior to
the equation of motion and the data to calculate the parameter
uncertainties. This error term is an adequate cepresentation
of noise in the data only if all) errors are randomly super-
imposed on the pitch angle output after the equa.ion of
motion has been integrated. The integrated effects of the
random accelerations representing system noise, however,
are such that the final errors appearing in the pitch angle
due to the system noise are not necessarily random or
independent from one discrete time to another.

3. Extended Kalmanr Filter

The feasibility of using an extended Kalman filter with
parameter augmented state vector for determining the values
of aerodynamic coefficients and their uncertainties from

dynamic test data has been demonstrated for a one-degree-
cf-freedom systemn.

The specific filter used here generally reaches near
steady-state estimates of the parameters in less than one
second for the system model and error combinations considered.

For linear systems with measurement errors cnly in the data, the
extended filter yielded estimates of both the static pitching moment
coefficient derivative and the pitch damping coefficient to within 1
percent of their respective true values. Slightly less accurate deter-
minations of the same two parameters are obtained using the filter when
both measvrement errors and system noise are present in the data.
Variations in the initial parameter variances of 25 percent seem to affect
e<sentially only the pitch damping term and then only when both measure-
wont errors and system noise are present in the data,
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For nonlinear systems with measurcment errors only in the data
the estimates obtained with the extended filter for the linear and
nonlinear static pitching moment coefficient derivatives as well as
the linear pitch damping coefficient are within approximately 1 per-
cent or less of their respective true values for a variety of initial
paxameter variances and noise variance estimates. The
error in the estimate of the nonlinear damping coefficient
varies between 1l percent and 14 percent. None of the
coefficinnts are particularly sensitive to variations in
the initial parameter variances or noise variances con=-
sidered. As is the case for the lirear system, the
extended filter is less accurate in its parameter identi-
fication when both measurement errors and system noise
of the magnitudes considered here are present in the data.
The linear damping cozfficient is most affected by
having the addition of system noise in the data. The
error in this coefficient increases from approximately
1 percent to approximately 6 percent for the cases con-
sidered. Errors in the noise variance estimates of
+25 percent have little or no appreciable effect on the
linear and nonlinear static pitching moment coefficient
derivatives or the linear pitch damping coefficient, and

only a slight effect on the nonlinear pitch damping
coefficient.

For the range of initial parameter errcrs, initial
parameter variances, and noise variances considered, the
extended Kalman filter produces an excellent estimate of
the parameter uncertainties after integrating the Ricatti
equations for approximately 1.5 to 2.0 seconds. For every
case considered where the initial parameter estimates are
within 25 percent of their true values, the near steady-
state parameter value is within two standard deviations
of its true value, and in the majority of cases within
one standard deviation, when the standard deviation is
taken to be the square root of the near steady-state
parameter variance. ‘

4. Comparison of the Two Techniques

There is a natural tendency when analyzing two tech-
niques to compare the results achieved when solving similarx

problems. Both techniques investigated have strengths and
weaknesses.

From the preceding discussion in this report, it is
obviouvé that the Chapman-Kirk technique requires less
information initially than the extended Kalman filter
since it is only necessary to make initial estimates of
the parameters in +hz former whereas the parameters, their
variances, and the noise vadriances must all be estimated
initjally when using the extended filter.

fhere is no provision to weigh the initial parameter
estimates when using the Chapman-Kirk technique whereas
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this is done through the initial variances when using

the extended filter. This feature is particularly
important if certain parameters are known with signifi-
cantly highexr accuracy before the extraction process begins.
The Chapman=-Kirk technique will sometimes actually down-
grade good initial estimates when analyzing noisy data
whereas the extended filter will tend to improve the
estimate or at least not downgrade it for the initial
parameter variances considered.

From an economic point of view, both techniques are
essentially equal concerning computational costs. The
extended filter must numerically integrate more equations
but only has to do this once; the Chapman-Kirk technique,
being an iterative scheme, must integrate fewer equations
more times.

The programming requirements of the extended filter
are less than those of the Chapman-Kirk technique since
the former requires no matrix inversions, simultaneous
equation solvtions, or logic for including or excluding
certain parameters from the extraction process.

5. Areas for Additional Work

This research is part of a larger and continuing
program whose goal is a critical study of methods for
extracting aerodynamic coefficients from dynamic data.
Since the research is of a continuing nature, it seems
appropriate to mention some areas where additional work
should be contemplated.

The results presented here are entirely for a one-
degree-cf~freedom system. The effect of system noise and
measurement errors on coefficients extracted from coupled,
multiple~degree~of-freedom systems may prove to be
extremely intercesting and is the next logical area to be
investigated.

The response of the extended filter to highly erroneous
initial parameter estimates seems quite good for the limited
number of cases investigated. It seems possible to take
advantage of this feature by constructing an extraction
algorithm which employs both an extended filter and a
Chapman-Kirk or similar technique in tundem with the
extended filter providing the required accurate initial
estimates for the differential corrections, iterative
“technique.

additional work in relating the effects of inadequate

or erroneous modeling to the noise problem should also
prove to be of interest.
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Finally, when considering new techniques such as the
use of the extended Kalman filter, it must be concluded
{ that additional numerical investigations will add to the .
confidence or more clearly define the limitations of this
) method of coefficient extraction.
3
}
i
N
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APPENDIX I

CHAPMAN-KIRK COEFFICIENT EXTRACTION NOMENCLATURE 1
LIST AND PROGRAM LISTING
Nomenclature List !
1
PROGRAM ‘
VARIABLE MATH SYMBOL DEFINITION
H At Numerical integration
step size (sec) 3
ITO Freguency of numerical
integration output
TMAX tmax Cutoff time for numeri-
cal integration (sec)
TZERO t Initial time for
numerical integration
(sec)
N N Number of first order
differential equations
to be integrated 1
XZ (1) ey Initial condition of «a
(rad)
XZ(2) &o Initial condition of & {
(rad/sec)
X2z (3) da Initial condition for
3cy . parametric differential 1
=0 equation
XZ(4) d_3a Initial condition for
at ac; parametric differntial
=0 equation
XZ(5) da
3 Coy
=0 Initial condition for
parametric differential
eguation -
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PROGRAM 1

VARIABLE MATH SYMBOL DEFINITION
Xz (6) d 3a Initial condition for
dt 3c, parametric differential i
=0 equation !
X2 (7) da Initial condition for -
acsy parametric differential |
=0 equation
i
XZ (8) d  3a Initial condition for 1
dt acj parametric differential
=0 equation
Xz (9) %%— Initial condition for ‘
4 parametric differential ‘
=0 equation 1
| XZ (10) d_ 3a Initial condition for ‘
dt acy parametric differential
=0 equation i
Xz (11) d0 Initial condition for ‘
3Cs parametric differential 1
=0 equation
1
Xz (12) a3 Initial condition for ‘
; dt acy parametric differential 1
=0 equation
X7 (13) da Initial condition for §
Cg parametric differential
=0 equation
r =
X7 (14) d_ 2o | Initial condition for .
dt dcg parametric differential 3
=0 equation
X% (15) 8a | Initial condition for ’
Cy parametric differential
equation
, XZ (16) d_ 3a | Initial condition for
| dt jc,y parametric differential
=7 equation




me ey

PROCRAM

VAR] ABLE

X2(17)

Xz (18)

AMI

CMAO

CMA2

CMA4

cMQo

CMQ2

CMDA

" — ‘*:mmwxnwa—v————“_v“ - T'l—' - h
T [N - —— - k. -

MATH SYMBOI,

da
dcg

W
=3

|

Q,Q-:
ct

@

Q

®

mao

ma2

ma b

mgo

mq2

méoa
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DEFINITION

Initial condition for
parametric differential
equation

Initial condition for
parametric differential
equation

Dynamic pressure
(1b/£t2)

Freestream velocity
(ft/sec)

Moment of inertia about
an axis through the
vehicle C.G. and normal
to the pitch plane
(slug . f£t2)

Vehicle reference area
(£+£2)

Vehicle reference
length (ft)

Static pitching moment
coefficient derivative
(rad-1)

Static pitching moment
coefficient derivative
(rad-3)

Static pitching moment
coefficient derivative
(rad-"5)

Pitch damping coeffi~
cient

Pitch damping coeffi-
cient (rad-2)

Static pitching moment
coefficient at a = 0
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PROGRAM 1
VARIABLE MATH SYMBOL DEFINITION
l M M Number of experimental
: data points
JJIMAX Maximum number of
iterations allowed .
before program termi-
nation
EP £ Convergence criteria
for change in RMS 3
ERROR (rad) )
AR (1) aexp(ti) Experimental values of
a (rad) J
Cl C]_ (!o ‘
C2 C2 ao
i c3 Cs - Cmaoq Ad
t !
2
C4 Cy ~ Cmgoq Ad :
2VI *
‘ c5 Cs - Cmazq Ad
I
1
2
Cé6 Cg - Cmgzq Ad
2VI
. »
Cc7 Cy - Cmagq Ad
I
cs Ce - Cngod A
I
]
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Categories of Input Data

) Numerical integration constants.—--These constants

: include the numerical integration step size, frequency of ,
output, time at which the numerical integration is to stop, [
initial time, and the number of firsi{ order equations to i
E be integrate@&.

Initial conditions.--These data are the first estimates
of the 1initial conditions for the equation of motion as well .
as the initial conditions for the parametric differential
equations.

Aexrodynamic and physical constants.--These constants
are the dynamic pressure and freestream velocity that
existed when the experimental pitch angle data were re- J

corded, the moment of inertia about an axis normal to the

! pitch plane and through the center of gravity of the vehicle

i of interest, a vehicle reference area, and a vehicle refer-

ence length. 1

Aerodynamic coefficient estimates.--These data are the
| first estimates of the aerodynamic coefficients to be
& extracted.

Convergency criteria.--These constants are the number
of experimental data polnts to be read, the maximum number {
of iterations to be allowed, and the tolerance against
which the root-mean-square error difference is tested for
convergence.

Experimental data.--These data are the experimental <
pitch angle values from which the aerodynamic coefficients
are to be extracted. The program assumes the time hetween
each data point is constant, and this time must be equal
to the product of the numerical integration step size and
frequency of numerical integration output that were given
on the first data card.
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APPENDIX IT

|
1

EXTENDED KAIMAN FILTER NOMENCLATURE LIST
AND PROGRAM LISTING

} Nomenclature List ‘

PROGRAM
VARIABLE MATH SYMBOL DEFINITION !
H At Numerical integration |
step size .(sec) 1
TZERO % Initial time for num- |
erical integration (sec)
TMAX tmax Cutoff time for numerical J
integration (sec)
- \
: ITO Frequency of numerical
integration output
N N Number of first order
equations to be integrated
M1 M Number of data points . 1
Xz (I) Initial conditions for
state variable and
variance estimates {
| Q q System noise variance
ﬁ (rad?/sect)
[ R x Measurement error
r variance (rad?)
; Z2(I) z . Experimental data
}. _values of a
[ X(1) X, Estimated value of
F a (rad)
i
- {
q
- 121 ‘
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PROGRAM

X(2)

X(3)
X (4)
X (5)
X(6)
X(7)
X(8)
%(9)
X(10)

X(11)
X (12)

X(13)

X(14)
X (15)
X(16)
¥(17)
X718)
X(19)

X(20)

VARIABLE

MATH SYMBOL

Xa
X3

Xy

Xs

DEFINITION

Estimated value
(rad/sec)

Estimated value
Estimated value
Estlimated value
Estimated value
Variance of ﬁl

Covariance of il
Covariance of il

Covariance of X;

Covariance of X;

Covariance of X;
Variance of ﬁz

Covariance of ﬁz
Covariance of ﬁz
Covariance of iz
Cowvariance of 22
‘Variance of §3

Covariance of §3

Covariance of Xj

of &

of Cj3
of Cy
of Cj

of Cg

and X,

and

and

and

and

and

and

and

and

and

and

e — ) A T T




PROGRAM

VARIABLE

X(21)
X(22)
X(23)
X(24)
X(25)
X(26)

X(27)

A(I)

MATH SYMBOL

=

123

DEFINITION

Covariance of §3
Variance of iq
Covariance of iq
Covariance of ﬁq
Variance of ﬁs
Covariance of ﬁs

Variance of Xg

and Xg

and Xs

and ﬁs

and ﬁs

Derivative of X with

respect to time




Categories of lInput Data

Numerical integration constants,--These constants are
the numerical integration step size, frequency of output,
time at which the integration is to stop, initia. time, the
number of first order equations being integrated, and the
number of data points to be read.

Initial conditions.~-These data are the initial estimates

of the state variable components, state variable variances, and
covaxriances.

Noise variance estimates.--These two entries are

the estimates of the measurement error variance and system
noise variance.

Pitch angle data.--These data are the experimental
values of the pitch angle from which the filter estimates
the states and parameters. The time between data points
is not input but is assumed to be the same as the numerical
integration step size input on the first data card.
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